الجامعة اللبنانية

كلية الصحة العامة

مباراة الدخول 2020- 2021 مسابقة في الكيمياء – Series A

المدة : ٥٤ دقىقة

عدد الصفحات: ٥

For each of the following questions circle <u>the right answer</u>. (Only one answer is correct)

1. We perform the oxidation of iodide ions I⁻ with the peroxydisulfate ions $S_2O_8^{2-}$, this reaction is slow and complete. (1pt)

$$2I^{-}(aq) + S_2O_8^2(aq) \rightarrow I_2(aq) + 2SO_4^{2-}(aq)$$

- a. The curve n(I) = f(t) is ascendent.
- b. The curve $n(I_2) = f(t)$ is descendent.
- c. The curve $n(I_2) = f(t)$ is ascendent.
- d. The curve n $(S_2O_8^{2-}) = f(t)$ is ascendent.
- **2.** For the following equilibrium the forward reaction is exothermic: (1pt)

$$I_{2(g)} + H_{2(g)} \rightleftharpoons 2HI_{(g)}$$

At a temperature $T_1 < T_2$:

- **a.** $\alpha_2 < \alpha_1$.
- **b.** $\alpha_2 > \alpha_1$.

c.
$$\alpha_2 = \alpha_1$$
.

- **d.** None of the above.
- **3.** A volume Va of a Ca (mol.L⁻¹) solution of sulfamic acid is taken and titrated with a solution of sodium hydroxide NaOH, the results obtained give the curve below: (1pt)

- تابع مسابقة في الكيمياء Series A ٢ -
- **a.** Sulfamic acid is a strong acid since the curve shows one inflection point and $pH_E = 7$.
- **b.** Sulfamic acid is a strong acid since $Ca = 10^{-2}mol.L^{-1}$ and $pH_E = 7$.
- **c.** Sulfamic acid is a weak acid since $Ca < 10^{-2}mol.L^{-1}$ and $pH_E > 7$.
- **d.** Sulfamic acid is a weak acid since the curve shows two inflection point and $pH_E < 7$.
- **4.** In the case of the colorimetric titration of a weak acid by a sodium hydroxide solution, it is necessary to choose an indicator whose change range zone is: (1pt)
 - **a.** Between 7 and 10.
 - **b.** Between 6 and 7.
 - **c.** Between 4 and 6.
 - **d.** Between 3 and 5.
- 5. Quantitative organic analysis of compound A formed of C, H and O gave the following mass percentages: C = 60% and H = 13.3%. Knowing that the molar mass of A is $60g.mol^{-1}$, the molecular formula of A is: (1pt)
 - a. $C_4H_{10}O$.
 - b. C_3H_8O .
 - c. C_3H_6O .
 - d. $C_4H_8O_2$

7.

Molar atomic mass in g.mol⁻¹ : C=12, O=16 and H=1

- 6. A dilution is carried out by using a commercial hydrogen peroxide solution S_0 of molar concentration $C_0 = 7.5$ mol. L¹. The solution S_0 is diluted 125 times in order to prepare a solution S of volume 1 L. The glassware needed to achieve this dilution are: (1.5pt)
 - a. 10 mL graduated pipette and 1000 mL volumetric flask.
 - b. 10 mL volumetric pipette and 1L volumetric flask.
 - c. 5 mL graduated pipette and 1000 mL volumetric flask.
 - d. 8 mL graduated cylinder and 1L volumetric flask.

(1.5pt)

تابع - مسابقة في الكيمياء - Series A - ٣ -

According to the curve:

- a. The initial rate of the reaction is less than the rate of reaction at time t = 2 hours
- b. The initial rate of the reaction is twice than the rate of reaction at time t = 2 hours
- c. The initial rate of the reaction is equal to the rate of reaction at time t = 2 hours
- d. The rate of the reaction at time t = 2 hours is equal to zero
- 8. For the system of the following graph (n) mole = f (t) that shows the maximum number of moles of product formed when the corresponding reaction ends at t=30 min, the half-life time of this reaction is approximately: (1.5pt)

- a. 2 minutes.
- b. 15 minutes.
- c. 5 minutes.
- d. 10 minutes.
- **9.** In a bulb of volume 15L, we introduce 0.6mol of nitrogen monoxide **NO** and 0.3mol of bromine gas Br_2 at a temperature $t_1 = 700^{\circ}C$. The following equilibrium is established: (1.5pt)

$2 \text{ NO}(g) + Br_2(g) \rightleftharpoons 2 \text{ NOBr}(g)$

At equilibrium the total number of moles of gaseous mixture is 0.85mol.

- a. The equilibrium constant Kc = 2.4
- b. The equilibrium constant Kc = 4.2
- c. The equilibrium constant Kc = 24
- d. The equilibrium constant Kc = 42
- **10.** The curve below (**Document 1**) shows the evolution of the pH as a function of the volume of sodium hydroxide solution of concentration C_b poured for the titration of a 20mL of 0.1mol.L^{-1} hydrochloric acid solution. (1.5pt)

تابع - مسابقة في الكيمياء - Series A - ٤ -

- **a.** $C_b = 0.1 \text{mol.} L^{-1}$.
- **b.** $C_b = 0.2 \text{mol.} L^{-1}$.
- **c.** $C_b > 0.1 \text{ mol.} L^{-1}$.
- **d.** $C_b > 0.2 \text{mol.} L^{-1}$.

11. We dissolve an acid HA (Ca = 10^{-3} mol.L⁻¹) in water. The pH of the solution obtained is pH= 3.9. The value of the Ka, the acidity constant is (1.5pt)

- **a.** 10^{-1} . **b.** $<10^{-1}$.
- **c.** > 10^{-1} .
- **d.** 10^{-3} .

12. Given : $pK_{a(NH_{4^{+}}NH_{3})} = 9.2$; $pK_{a(CH_{3}COOH/CH_{3}COO^{-})} = 4.8$ (1.5pt)

- **a.** The base NH_3 is stronger than the base CH_3COO^-
- **b.** The acid NH₄⁺ is stronger than the acid CH₃COOH
- **c.** NH₄⁺ and CH₃COOH are two strong acids
- **d.** NH_3 and CH_3COO^- are two strong bases

13. Two solutions S_1 and S_2 of acid of concentration C are available. These solutions are then diluted 100 times. The pH is measured before and after dilution (**Document 1**). (1.5pt)

	С	C /100
pH of S1	2	4
pH of S2	3	4.5
Document 1		

a. Both acids are strong.

b. The concentration C of the solution S_1 is 0.01 mol.L⁻¹.

c. Both acids are weak.

d. The acid of solution S_2 is stronger than the acid of solution S_1 .

14. Given the following condensed structural formula of the alcohol of formula $C_4H_{10}O$: (1.5pt)

CH ₃ -CH ₂ -CH ₂ -CH ₂ -OH (a)	CH ₃ -CH-CH ₂ -CH ₃	CH ₃ -CH-CH ₂ -OH
	OH (b)	CH ₃ (c)

- **a.** (a) and (c) are positional isomers.
- **b.** (a) and (c) are secondary alcohols.
- **c.** (b) is the functional isomer of (a).
- **d.** The name of the tertiary alcohol isomer of (a), (b) and (c) is 2-methyl,2-propanol.
- **15.** One mole of ethanol reacts with 2 moles of ethanoic acid to an ester. The percentage yield of this esterification is: (1.5pt)
 - **a.** 5%
 - **b.** 60%
 - **c.** 67%
 - **d.** 80%

N.B: In an equimolar mixture of alcohol and an acid the % yield of esterification is:

- 67% if the alcohol is primary.
- 60% if the alcohol is secondary.
- 5% if the alcohol is tertiary.

Good Luck